If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+7y^2-2=0
We add all the numbers together, and all the variables
16y^2-2=0
a = 16; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·16·(-2)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*16}=\frac{0-8\sqrt{2}}{32} =-\frac{8\sqrt{2}}{32} =-\frac{\sqrt{2}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*16}=\frac{0+8\sqrt{2}}{32} =\frac{8\sqrt{2}}{32} =\frac{\sqrt{2}}{4} $
| 5x=1=6-3x | | x-2.3=-5.5 | | 2(x-(2x+14)+12)=2(x+2) | | M^2+5m=-2m | | Y=48x+18 | | 7(4x-8)+23=57 | | x/6=0.88 | | -(m+2)-m-7=-6(m+4)+7 | | 2x-(3-x)=x | | 12(3x-1)÷7=6 | | $6505/$390=(1.183)^t | | -2x+6x-6=4(x-2)-4 | | x-0,07x=70 | | -9(v+4)+2v+6=7v+9 | | 15w+18w-7+5=-5w+5-7 | | F(x)=(x-4)(2x+1) | | x^2+45x=2,079 | | 5-8a=2a-25 | | 5(x+2)=-3(2x+4) | | 2/5x+5/8=-5/2-3/5x | | 2(-3-4x)-5x=-16x-36 | | 10y-7=1 | | x²+49=121 | | x-2/x+5=x-8/x+2 | | x^2-4=x^2-3x-40 | | 13x+35=200 | | 7y+4=5y+12 | | 6-3x=4(x2 | | 6-3x=4(x+2 | | 5(x^+2x)=73 | | X2+28x+147=0 | | 3.7x=2.6x+8.8 |